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Abstract

1-year data sets of monthly averaged nitrous oxide (N2O) and ozone (O3) derived
from satellite measurements were used as a tool for the evaluation of atmospheric
photochemical models. Two 1-year data sets, one derived from the Improved Limb
Atmospheric Spectrometer (ILAS and ILAS-II) and one from the Odin Sub-Millimetre5

Radiometer (Odin/SMR) were employed. Here, these data sets are used for the evalu-
ation of two Chemical Transport Models (CTMs), the Karlsruhe Simulation Model of the
Middle Atmosphere (KASIMA) and the Chemical Lagrangian Model of the Stratosphere
(CLaMS) as well as for one Chemistry-Climate Model (CCM), the atmospheric chem-
istry general circulation model ECHAM5/MESSy1 (E5M1) in the lower stratosphere10

with focus on the Northern Hemisphere. Since the Odin/SMR measurements cover the
entire hemisphere, the evaluation is performed for the entire hemisphere as well as for
the low latitudes, midlatitudes and high latitudes using the Odin/SMR 1-year data set
as reference. To assess the impact of using different data sets for such an evaluation
study we repeat the evaluation for the polar lower stratosphere using the ILAS/ILAS-II15

data set. Only small differences were found using ILAS/ILAS-II instead of Odin/SMR as
a reference, thus, showing that the results are not influenced by the particular satellite
data set used for the evaluation. The evaluation of CLaMS, KASIMA and E5M1 shows
that all models are in good agreement with Odin/SMR and ILAS/ILAS-II. Differences
are generally in the range of ±20%. Larger differences (up to −40%) are found in all20

models at 500±25 K for N2O mixing ratios greater than 200 ppb. Generally, the largest
differences were found for the tropics and the lowest for the polar regions. However, an
underestimation of polar winter ozone loss was found both in KASIMA and E5M1 both
in the Northern and Southern Hemisphere.
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1 Introduction

The slowly decreasing level of halogens in the stratosphere in the coming decades
is expected to lead to a gradual recovery from the chemical ozone depletion that is
clearly noticeable in the extratropics since ∼1980 (WMO, 2007). However, in the future
the stratosphere will be influenced through a range of processes (radiative, dynamical5

and chemical) resulting from increases in green-house gas concentrations and future
IPCC reports will be based on climate models that include full representation of the
stratosphere (Shaw and Shepherd, 2008). Therefore, an improved understanding of
these processes as well as the interaction between chemistry and climate is needed if
credible predictions of future levels of stratospheric ozone and its impact on climate and10

surface UV radiation are to be made (WMO, 2007; Eyring et al., 2006, 2007). A num-
ber of Chemistry-Climate Models (CCMs) have been developed in the recent decade
in order to provide such predictions. Although a lot of progress has been made the
prediction of current CCMs produce still a wide range of results concerning the timing
and extent of the ozone layer recovery (WMO, 2007). Recent analyses of chemical15

ozone loss in the polar regions show a substantial underestimation of ozone loss in
the Antarctic and a severe underestimation of ozone loss in the Arctic (Tilmes et al.,
2007; Lemmen et al., 2006). Therefore, evaluating these models with measurements
is essential.

Here, we use a method based on ozone (O3) and nitrous oxide (N2O) measurements20

to evaluate Chemical Transport Models (CTMs) as well as Chemistry Climate Models
(CCMs). This method has been first presented by Proffitt et al. (2003) for the Northern
Hemisphere lower stratosphere based on aircraft and balloon-borne measurements
and has then been extended to the upper stratosphere and Southern Hemisphere by
Khosrawi et al. (2004, 2006) using satellite data from the Improved Limb Atmospheric25

Spectrometers (ILAS and ILAS-II). However, the ILAS/ILAS-II data are restricted to the
polar regions. In a follow-up study by Khosrawi et al. (2008) satellite data from the
Odin/Sub Millimetre Radiometer (Odin/SMR) were used which allowed an extension
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of the method to the entire Northern and Southern Hemisphere as well as a separa-
tion into polar, midlatitude and tropical regimes. A comparison of the ILAS/ILAS-II and
Odin/SMR data sets in the polar regions showed that both data sets can be used for
the evaluation of CTMs and CCMs. Thus, in Khosrawi et al. (2008) we could verify the
ILAS/ILAS-II 1-year data set and demonstrate that limited sampling of a solar occulta-5

tion instrument such as ILAS/ILAS-II does not constitute a problem in deriving such a
data set of monthly averages of N2O and O3.

Here, we use 1-year data sets derived from Odin/SMR and ILAS/ILAS-II to evaluate
simulations in the lower stratosphere of two CTMs, namely the Chemical Lagrangian
Model of the Stratosphere (CLaMS) and the Karlsruhe Simulation Model of the Mid-10

dle Atmosphere (KASIMA) as well as one CCM, the atmospheric chemistry general
circulation model ECHAM5/MESSy1 (E5M1).

2 Model data

2.1 CLaMS

The Chemical Lagrangian Model of the Stratosphere (CLaMS) is a chemistry trans-15

port model which simulates the dynamics and chemistry of multiple air parcels along
their trajectories (McKenna et al., 2002a,b; Konopka et al., 2004). The trajectories are
determined from wind fields taken from European Centre for Medium-range Weather
Forecasts (ECMWF) analyses. The mixing of air parcels, that is the interaction be-
tween neighboring air parcels, is introduced both by combining air parcels and adding20

new air parcels where the mixing intensity is driven by the deformation of the wind
field (McKenna et al., 2002a). As the air parcels are distributed irregularly in space,
the horizontal resolution is defined by the mean distance of neighboring air parcels
on an isentropic surface. Vertical motion is calculated as the time derivative of po-
tential temperature using the radiation scheme by Morcrette (1991). Here, we used a25

CLaMS simulation for the Northern Hemisphere with a horizontal resolution of 100 km
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north 40◦ N and of 300 km between 40◦ N and the Equator (Grooß et al., 2005). As
vertical coordinate potential temperature is used, divided into 30 equally spaced levels
between 350 and 900 K. The CLaMS simulation used here started on 17 November
2002 and was run until 23 March 2003. The initialization of O3 was based on the
MIPAS/ENVISAT data from 16 and 17 November 2002. A detailed description of the5

CLaMS model and this simulation can be found in McKenna et al. (2002a,b) and Grooß
et al. (2005).

2.2 KASIMA

The Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA) is a mechanis-
tical circulation model including stratospheric chemistry for the simulation of the be-10

havior of physical and chemical processes in the middle atmosphere (Ruhnke et al.,
1999; Reddmann et al., 2001). The meteorological component is based on a spectral
architecture with the pressure altitude z=−H· ln (p/p0) as vertical coordinate where
H=7 km is a constant atmospheric scale height, p is the pressure, and p0=1013.25 hPa
is a constant reference pressure. A horizontal resolution of T42 (2.8◦×2.8◦) has been15

used. In the vertical regime, 63 levels between 10 and 120 km pressure altitude and a
0.75 km spacing from 10 up to 22 km with an exponential increase above were used.
The meteorology module of the KASIMA model consists of three versions: the diagnos-
tic model, the prognostic model and the nudged model which combines the prognostic
and diagnostic model (Kouker et al., 1999). In this study, the model is nudged towards20

the operational ECMWF analyses of temperature, vorticity and divergence between 7
and 48 km pressure altitude. Above 48 km pressure altitude the prognostic model has
been used. The rate constants of the gas phase and heterogeneous reactions were
taken from Sander et al. (2003). The photolysis rates are calculated online with the
Fast-J2 scheme of Bian and Prather (2002). The distributions of chemical species in25

the KASIMA simulation used here were initialized on 30 March 2002 with results from
a long-term KASIMA simulation.
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2.3 ECHAM5/MESSy1

The atmospheric chemistry general circulation model ECHAM5/MESSy1 Version 1.4
(hereafter denoted as E5M1) is a combination of the general circulation model ECHAM5
(Roeckner et al., 2006) and the Modular Earth Submodel System (MESSy1, Jöckel
et al., 2005, http://www.messy-interface.org). Here we analyse data for the year 20035

from the S1 simulation (covering the period 1998 to 2005) described by Jöckel et al.
(2006). For this simulation a comprehensive atmospheric chemistry setup for the tro-
posphere, the stratosphere and the lower mesosphere has been applied. The model
simulation was performed in T42L90MA resolution, i.e., with a triangular truncation at
wave number 42 for the spectral core of ECHAM5, which corresponds to a quadratic10

Gaussian grid of approximately 2.8◦×2.8◦ degrees in latitude and longitude, and with
90 vertical layers from the surface up to 0.01 hPa (approx. 80 km). A Newtonian re-
laxation technique of the prognostic variables temperature, vorticity, divergence and
the (logarithm of the) surface pressure above the boundary layer and below 100 hPa
towards ECMWF operational analysis data has been applied, in order to nudge the15

model dynamics towards the observed meteorology. For further details of the model
and the model setup of the S1 simulation, we refer to Jöckel et al. (2006).

In addition, we performed an E5M1 sensitivity simulation with the same horizontal,
but a lower vertical resolution with 39 layers up to 0.01 hPa (T42L39MA). The chem-
istry setup was reduced to focus on stratospheric ozone chemistry with a simplified20

description of the tropospheric ozone chemistry. The MESSy-submodels used for this
simulation describe the following processes: ONLEM for “online” emissions of trac-
ers and aerosols, OFFLEM for “offline” emissions of tracers and aerosols, TNUDGE
for tracer nudging (Kerkweg et al., 2006a), DRYDEP for dry deposition of trace gases
and aerosols, SEDI for the sedimentation of aerosol particles (Kerkweg et al., 2006b),25

MECCA for the gas-phase chemistry (Sander et al., 2005), JVAL for the calculation
of photolysis rates (Landgraf and Crutzen, 1998), SCAV for the scavenging and liquid
phase chemistry in cloud and precipitation (Tost et al., 2006a), CONVECT for the pa-
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rameterization of convection (Tost et al., 2006b), LNOX for the source of NOx produced
by lightning (Tost et al., 2007a), PSC for the processes related to polar stratospheric
clouds (Buchholz, 2005), QBO for nudging the quasi-biennial oscillation (Giorgetta
et al., 2006), PTRAC for additional prognostic tracers (Jöckel et al., 2008), CVTRANS
for convective tracer transport, TROPOP for diagnosing the tropopause and boundary5

layer height, H2O for stratospheric water vapor, RAD4ALL for the radiation calculation,
HETCHEM for calculating reaction coefficients of heterogeneous reactions on aerosols
(see Jöckel et al., 2006 and references therein) as well as CLOUD for calculating the
cloud cover as well as cloud micro-physics including precipitation (Tost et al., 2007b).
For this sensitivity simulation, covering the period from the begin of 2000 to the end10

of 2007, the model dynamics was also nudged (up to 10 hPa) towards the ECMWF
operational analysis. For the analysis presented here, we used data for the year 2003.

3 Satellite data

3.1 Odin/SMR

The Odin satellite is operated by the Swedish Space Cooperation in cooperation with15

groups from France, Canada and Finland (Murtagh et al., 2002). Odin was launched on
20 February 2001 and carries two instruments, the Optical Spectrograph and Infrared
Imaging System (OSIRIS) (Llewellyn et al., 2004) and the Sub-Millimetre Radiometer
(SMR) (Frisk et al., 2003). Observations of thermal emission of trace gases originating
from the Earth’s limb are performed in a time-sharing mode with astronomical observa-20

tions. In aeronomy mode, various target bands are dedicated to profile measurements
of trace constituents relevant to stratospheric and mesospheric chemistry and dynam-
ics such as O3, ClO, N2O, HNO3, H2O, CO, and NO, as well as isotopes of H2O and
O3 (e.g., Murtagh et al., 2002). Aeronomy mode measurements are performed twice
a week until April 2007 and every other day thereafter. A typical stratospheric mode25

scan covers the altitude range from 7 to 70 km with a resolution of ≈1.5 km in terms of
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tangent altitude below 50 km and ≈5.5 km above. Usually, the latitude range between
82.5◦ S and 82.5◦ N is covered by the measurements (Urban et al., 2005a,b).

For the retrieval of vertical profiles from the spectral measurements of a limb scan
(aeronomy level-2 processing) two similar data processors have been developed. Here,
we use Odin/SMR version 2.1 (Chalmers v2.1) data from the 501.8 GHz band. N2O5

and O3 profiles are retrieved from ≈12 to 60 km and ≈13 to 65 km, respectively, with an
altitude resolution of 1.5 km and 3 km, respectively. The Odin/SMR N2O data are vali-
dated in the range ≈15–50 km. The systematic error is estimated to be ≤12 ppbv above
20 km and in the range of 12–35 ppbv (up to 10–15%) below (Urban et al., 2005a). Ex-
tensive validation of Odin/SMR has been conducted, especially with the space-borne10

sensors Michelson Interferometer for Passive Atmospheric Soundings (MIPAS), ACE-
Fourier Transform Spectrometer (ACE-FTS) and the Aura Microwave Limb Sounder
(Aura-MLS). Validation of Odin/SMR N2O with MIPAS showed a good overall agree-
ment within 4–7 ppbv (Urban et al., 2005b, 2006). Further, validation studies by Strong
et al. (2008) and Lambert et al. (2007) showed a very good agreement of Odin/SMR15

with ACE-FTS (better than −20%) and with Aura-MLS (better than 4–10%), respec-
tively. The systematic error of Odin/SMR O3 measurements is estimated to be lower
than 0.6 ppmv. Odin/SMR measurements of O3 derived with the Chalmers Version 2.1
retrieval algorithm were validated by Jégou et al. (2008) and showed a good agreement
of Odin/SMR Version 2.1 data with ground-based (−0.15±0.3 ppmv), balloon-borne20

(−0.7±1 ppmv) and space-borne sensors (−0.3±0.2 ppmv). The intercomparison of
Odin/SMR ozone measurements with MIPAS and balloon sonde data by Jones et al.
(2007) showed an agreement within 10% between 17 and 55 km (a maximum deviation
of 0.42 ppmv) and 5–10% between 25 and 35 km (less than 0.5 ppmv below 33 km).
The validation study of ACE-FTS ozone measurements (Dupuy et al., 2008) showed25

a good agreement between ACE-FTS and Odin/SMR. The agreement between both
instruments is better than +14% (0.5 ppmv) below 25 km. Between 25 and 40 km the
percent differences where somewhat larger, ranging between 13–20%.
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3.2 ILAS/ILAS-II

The Improved Limb Atmospheric Spectrometers ILAS and ILAS-II used the solar oc-
cultation technique which measures the absorption of stratospheric species in the in-
frared region of solar radiation (Yokota et al., 2002; Oshchepkov et al., 2005). The
measurements were made in high latitude regions of the Northern and Southern Hemi-5

sphere covering the latitudes from 56◦ N to 70◦ N and from 63◦ S to 88◦ S (ILAS) and
between 54◦ N to 71◦ N and 64◦ S and 88◦ S (ILAS-II). Measurements of vertical profiles
of O3, HNO3, NO2, N2O, CH4, H2O, CFC-11, CFC-12, ClONO2, and N2O5 were made
14 times per day in each hemisphere (Nakajima et al., 2006a,b) with a vertical reso-
lution of 1 km. ILAS was launched onboard the Earth Observing Satellite (ADEOS)10

on 17 August 1996 and measured continuously from 30 October 1996 to 30 June
1997 (Sasano et al., 1999) while ILAS-II was launched on 14 December 2002 onboard
ADEOS-II and measured continuously from 2 April 2003 to 24 October 2003 (Nakajima
et al., 2006b).

Here, we use ILAS Version 6.1 (Nakajima et al., 2006a) and ILAS-II Version 2 data.15

Validation studies of ILAS Version 5.2 and ILAS-II Version 1.4 ozone data (Sugita et al.,
2002, 2006) show a good agreement with correlative measurements between 11 and
64 km and between 11 and 40 km, respectively. The validation of ILAS Version 6.1
nitrous oxide data by Kanzawa et al. (2002) shows a good agreement between 10 and
40 km while ILAS-II Version 1.4 nitrous oxide data tend to be 10% lower in comparison20

to the Odin/SMR data and balloon-borne measurements (Ejiri et al., 2006). The latest
Version 2 of ILAS-II has been improved compared to the former Version 1.4 by an im-
proved transmittance correction in the Northern Hemisphere, by using HITRAN 2004
(Rothman et al., 2005) parameters instead of HITRAN 2000 (Rothman et al., 2003)
parameters and by an improved tangent height registration (Tanaka et al., 2007). The25

intercomparison studies of Version 1.4 and Version 2 target species by Griesfeller et al.
(2008) and Wetzel et al. (2008) show an improvement of the O3 data in the Northern
Hemisphere compared to the former Version 1.4 and a good agreement with mea-
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surements from MIPAS and the balloon-borne MIPAS-B, respectively, between 16 and
31 km. Differences between the two retrieval versions were small for N2O and a good
agreement with MIPAS and MIPAS-B measurements was found as well between 16
and 31 km.

4 The O3/N2O distribution in the polar lower stratosphere5

Proffitt et al. (2003) have a suggested a somewhat different way to use stratospheric
tracer-tracer correlations than in the commonly employed method to deduce chemical
polar ozone loss (e.g., Proffitt et al., 1993; Tilmes et al., 2003; Müller et al., 2005).
Proffitt et al. (2003) calculated monthly averages of N2O and O3 by binning the data
by altitude or potential temperature and then averaging over a fixed interval of N2O10

(20 ppbv). This method helps to separate O3 variability due to latitudinal transport from
photochemical changes. Thus, the changes in the families of curves derived by using
the method of Proffitt et al. (2003) are not only caused by chemical ozone loss or
production, but also by transport processes (Proffitt et al., 2003; Khosrawi et al., 2004,
2006, 2008). How diabatic descent influences the families of curves has been shown15

in detail by Khosrawi et al. (2008) using the relationship between N2O and potential
temperature. Here, we will only discuss how the families of curves are influenced by
diabatic descent as well as by winter and summer ozone destruction in the Northern
Hemisphere polar regions on the basis of a schematic figure (Fig. 1).

The general characteristic of the families of curves derived from monthly averages20

of N2O and O3 binned by altitude or potential temperature is a positive correlation
(increasing N2O with increasing O3) at the upper levels (above 500 K or 20 km) and
a negative correlation (decreasing N2O with increasing O3) at the lower levels (below
500 K). The positive correlation at the levels above 500 K is caused by diabatic descent
of air from above the O3 maximum (Proffitt et al., 2003). Strong descent results in a25

steepening of the positively correlated curves and thus, the stronger the descent the
stronger the steepening (Khosrawi et al., 2004). How descent affects the curves in the
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polar regions is schematically shown on one curve (25 km, ≈550 K) in Fig. 1 (bottom:
left) for the Northern Hemisphere for June and November. In June when descent is
weak a negative correlation is found while in November when descent increases in
strength the correlation changes to positive (increasing N2O with increasing O3). Sub-
stantial subsidence is generally observed in the Northern and Southern Hemisphere5

polar regions from fall to spring (e.g., Proffitt et al., 1989; Tuck, 1989; Russell et al.,
1993; Rosenfield et al., 1994).

Polar winter ozone loss causes an inflection of the curves and therefore a change of
slope (Fig. 1, top: left). Thus, the slope of the curves change from negative (at high
N2O mixing ratios) to positive correlated (at low N2O mixing ratios). In general, when10

the maximum ozone loss is reached, this change of slope develops into a minimum
in O3 at around 50 ppbv N2O (especially in the Southern Hemisphere). Figure 1 (top:
left) shows this schematically for the curve at 20 km altitude (≈500 K) comparing the
months January and March for the Northern Hemisphere. In January a change of slope
is already visible at 150 ppmv N2O. In March this inflection has shifted to somewhat15

higher N2O mixing ratio (200 pbbv) and O3 mixing ratios have decreased for low N2O
mixing ratios due to photochemical ozone destruction (Fig. 1, top: left). Evidence for
chlorine-catalyzed photochemical O3 destruction during late winter and early spring
was reported for both hemispheres for several winters in previous studies based on
model results and observations (e.g., Müller et al., 1997; Manney et al., 2003; Tilmes20

et al., 2004; Goutail et al., 2005; WMO, 2007).
The polar summer ozone destruction tends to reduce the ozone mixing ratios and

thus the magnitude of the negative O3/N2O slope above 25 km (≈550 K) as shown
schematically in Fig. 1 (top: right) for the curves at 25 km (June and August). In August
O3 mixing ratios are lower for all corresponding N2O mixing ratios than in June due25

to photochemical O3 destruction. Summer ozone loss from NOx catalysis is found in
the Northern Hemisphere from May to August between ≈10 and 100 hPa in the high
latitudes and midlatitudes (e.g., Farman et al., 1985; Brühl and Crutzen, 2000). A
detailed description of the method and characteristics of the N2O/O3 distribution can

1987

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/1977/2009/acpd-9-1977-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/1977/2009/acpd-9-1977-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 1977–2020, 2009

Model evaluation

F. Khosrawi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

be found in Khosrawi et al. (2008) and references therein.
Reference curves can be derived from measured correlations of N2O and O3. Such

reference curves have been e.g. derived from shuttle data and have a clear depen-
dence on latitude (Michelsen et al., 1998). The reference curves for May midlatitudes
(ATMOS Shuttle 1985), April high latitudes (ATMOS Shuttle 1993) and November trop-5

ics (ATMOS Shuttle 1994) are shown in Fig. 1 (bottom: right). These reference curves
help to distinguish between the different air masses. In general, the tropical air has
higher N2O mixing ratios than the reference curve for the midlatitudes and the tropics
while the midlatitude air is centered around the midlatitude reference curve and the
high latitude air has N2O mixing ratios that are lower than the high latitude and midlati-10

tude reference curves. These reference curves were used by Khosrawi et al. (2008) to
distinguish between the air masses measured by Odin/SMR.

5 Model evaluation

Here, we evaluate simulations of stratospheric ozone by the models CLaMS, KASIMA
and E5M1. For this purpose, monthly averages of N2O and O3 were calculated from15

the model results. For the evaluation of CLaMS, KASIMA and E5M1 the 500±25 K
and 650±25 K potential temperature level were chosen. These levels were chosen
since at 500±25 K polar winter ozone loss is pronounced and at 650±25 K descent
is pronounced. The Odin/SMR data were taken as reference since from Odin/SMR
global measurements are available. This allows us to evaluate the models not only20

for the entire hemisphere (considering all latitudes between 0◦–90◦), but also sep-
arated into the latitude regimes high latitudes (60◦–90◦), midlatitudes (30◦–60◦) and
low latitudes (0◦–30◦). Further, to investigate on the differences caused by using dif-
ferent data sets as reference, we will evaluate CLaMS, KASIMA and E5M1 for the
polar regions using ILAS/ILAS-II as reference (Sect. 5.3). Furthermore, we asses25

the effect of using a coarser spatial resolution in the model simulation by compar-
ing the E5M1 T42L90 simulation with a T42L39 simulation. The differences D be-
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tween Odin/SMR, ILAS/ILAS-II, CLaMS, KASIMA and E5M1 are calculated as follows:
D=[µ (Model)−µ (Odin)]/µ (Odin)∗100, where µ denotes the O3 mixing ratio at a given
N2O mixing ratio of the Odin/SMR measurement and the model simulation, respec-
tively. We refer to a good agreement in case of differences within ±20% and to a
reasonable agreement for differences within ±40%.5

The evaluation was performed for the Northern Hemisphere for the months Novem-
ber to February. These months have been chosen since the CLaMS simulation covers
only the months from November to March. However, these months are particularly
suitable to test the performance of the models during the Arctic winter, that is, during
a period of significant chemical O3 loss. To give an overview over the performance of10

the models for each month of the year, we calculated the averages of the differences
for each month (which will be discussed in Sect. 5.5).

The strategy of this evaluation was to not consider a certain winter, but to perform a
general evaluation. The data of the models and the measurements were primarily taken
for the year 2003. However, since the CLaMS simulation was performed for the winter15

2002/2003, the months November and December are for 2002. Further, since the
months considered here were measured by ILAS (and not by ILAS-II) this data is for the
years 1996 (November and December) and 1997 (January and February). However,
the principal dynamical and chemical processes in each winter are the same and only
the strength of these processes changes from year to year, thus small differences can20

occur from the usage of different years but these differences are clearly distinguishable
from model deficiencies (Khosrawi et al., 2006, 2008).

The evaluation of CLaMS, KASIMA and E5M1 is shown in Fig. 2 for the entire North-
ern Hemisphere, and, separated into latitude regimes, in Figs. 3–5. The range of
standard deviation of the monthly averaged O3 derived from Odin/SMR are marked as25

a grey shaded area while standard deviations of the models are not included to keep
the figures more concise. Standard deviations of the models are generally <5 ppbv for
N2O and <0.5 ppmv for O3.
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5.1 All latitude regimes (NH)

In Fig. 2, the evaluation for the Northern Hemisphere for the months November to
February is shown. As described in Sect. 4, a positive to flat correlation is found at
650±25 K and a negative correlation at 500±25 K. In November CLaMS, KASIMA and
E5M1 agree quite well with Odin/SMR. In the monthly averages, solely at N2O mixing5

ratios larger than 230 ppb lower O3 mixing ratios are derived from the model simu-
lations than derived from Odin/SMR observations. Here, the differences in the aver-
aged O3 mixing ratios increase up to −40%. While the KASIMA and E5M1 curves for
500±25 K do not extend to N2O mixing ratio as low as derived from Odin/SMR (70 ppbv
N2O) lower N2O mixing ratios are found in the CLaMS simulation (30 ppbv N2O). This10

indicates that in CLaMS a stronger descent is simulated than observed in November
while in KASIMA and E5M1 the descent is simulated slightly less than observed at that
time. At 650±25 K CLaMS and E5M1 agree quite well with Odin/SMR with differences
in the averaged O3 mixing ratios within +10% and +20%, respectively. Somewhat
larger differences (generally in the range of ±20%) are found for KASIMA, especially15

at N2O mixing ratios lower than 100 ppbv and larger than 250 ppbv. Similar results
are found for December, but in all models at 500±25 K as well as at 650±25 K larger
deviations from Odin/SMR are found at N2O greater 250 ppb which can be attributed
to influence of air of tropical character (air with higher mixing ratios than the tropical
reference curve, see Fig. 1, bottom: right), thus, indicating differences of the model20

simulation in the tropical regions (Fig. 2, December). These differences will be dis-
cussed in more detail in Sect. 5.2.1. However, the ozone differences for the averaged
N2O mixing ratios range generally within ±20% for all models.

From January on, ozone loss is visible at 500±25 K by an inflection and a change of
slope from positively to negatively correlated. In the Odin/SMR monthly averages as25

well as in CLaMS and KASIMA monthly averages this inflection is found at 190 ppbv
while in E5M1 this inflection is shifted slightly and is found at 210 ppbv (Fig. 2, left, Jan-
uary). This shift in the inflection is caused by an underdetermination of ozone destruc-

1990

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/1977/2009/acpd-9-1977-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/1977/2009/acpd-9-1977-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 1977–2020, 2009

Model evaluation

F. Khosrawi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

tion during polar winter in E5M1. Further, while in CLaMS, KASIMA and Odin/SMR
the O3 mixing ratios tend to decrease with decreasing N2O this is not found in E5M1.
Here, the mixing ratios tend rather to increase confirming too that polar ozone loss in
the model is underestimated. This will be discussed in more detail in Sect. 5.2.3.

In general, the monthly averages of N2O and O3 derived from CLaMS, KASIMA5

and E5M1 simulations are in good agreement with Odin/SMR measurements with
differences in O3 mixing ratios in the range of ±20% if the entire Northern Hemi-
sphere (all latitudes) is considered. Differences at 500±25 K are somewhat larger
than at 650±25 K, especially at N2O mixing ratios greater than 200 ppb (500±25 K)
and 250 ppb (650±25 K), respectively, larger differences are found. In all models, dif-10

ferences increase here up to −40%.

5.2 Separation into latitude regimes (NH)

In the following the evaluation will be performed separately for three latitude regions:
high latitudes (60◦ to 90◦ N), midlatitudes (30◦ to 60◦ N) and low latitudes (0◦ to 30◦ N).
The tropics are not truly isolated from the midlatitudes and these are not truly isolated15

from the high latitudes (e.g. Tuck et al., 1989; Proffitt et al., 1989; Tuck and Proffitt,
1997; Randel et al., 1993; Michelsen et al., 1998; Proffitt et al., 2003). Data taken
well outside the tropics can be of tropical character (Randel et al., 1993). However,
the separation of the N2O/O3 data set into the different latitude regimes reveals the
rather different characteristics of these air masses (Khosrawi et al., 2008). Generally,20

in the N2O/O3 distribution the region with low N2O and high O3 mixing ratios can be
attributed to air of polar character and the region with high N2O and low O3 mixing
ratios can be attributed to air of tropical character while the intermediate region of N2O
and O3 mixing ratios characterize midlatitude air (Sect. 4 and Fig. 1, bottom: right).
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5.2.1 Tropics

The CLaMS simulation investigated here was focusing on ozone loss in the polar re-
gions and thus was performed with a much lower spatial resolution between 0 and 40◦ N
acting mainly as a boundary for the high and midlatitudes. Therefore, the CLaMS data
set is not considered in the evaluation of the tropics. In the tropics, changes of the5

N2O/O3 distribution from season to season and between the hemispheres are small
(Khosrawi et al., 2008). A flat to positive correlation is generally found above 700 K.
The positive correlation is caused by the photochemical production of ozone in the
tropics. At potential temperature levels below 550 K the correlation is influenced by
midlatitude air (Khosrawi et al., 2008). For the tropics, a good agreement is found for10

KASIMA and E5M1 at 650±25 K while a reasonable agreement is found for 500±25 K.
At 500±25 K in both models a steeper negative correlation is found which leads to
higher O3 mixing ratios at N2O mixing ratios smaller than 250 ppbv and lower O3 mix-
ing ratios at N2O mixing ratios larger than 250 ppbv (Fig. 3, left, all months). Therefore,
differences in averaged O3 mixing ratios change from +40% to −40% with increas-15

ing N2O. At 650±25 K differences are not exceeding ±20% and averaged O3 derived
from KASIMA and E5M1 are generally higher than the ones derived from Odin/SMR
(Fig. 3, right, all months). The large differences at 500 K are partly caused by the fact
that in the tropical regions large gradients in O3 occur and these are interpolated onto
a certain potential temperature level from a rather coarse altitude resolution (3 km) of20

Odin/SMR (thus too coarse to resolve these gradients properly). However, this dif-
ferences could also be to some part be caused by model deficiencies. The steeper
correlation in the models could be caused by a too strong mixing of midlatitude air into
the tropical regions. To understand this difference in detail further data sets have to
be taken into account. However, this is beyond the scope of this study. The same25

applies to the unusually high N2O values found in the Odin/SMR monthly averages at
650±25 K (N2O>300 ppb). It has to be noted that the reported statistical uncertainty of
single Odin/SMR data points on that level is of the order of the chosen N2O bins size
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(1σ≈25 ppbv). This may led to an artificial extension of the correlation curves at their
ends. This argument is supported by the fact that a rather low number of data points
is present in the bins for N2O>300 ppb compared to other bins. Therefore, we do not
further discuss here the monthly averages of O3 and N2O derived from Odin/SMR and
the differences to the simulations for these bins.5

5.2.2 Midlatitudes

In the midlatitudes generally a good agreement between CLaMS, KASIMA and E5M1
with Odin/SMR observations is found (Fig. 4). In November and December the dif-
ferences at 650±25 K lie generally around ±10% (with a tendency to +10%) and in
January and February at around +20%, thus showing generally larger ozone mixing10

ratios than measured (Fig. 4, right). At 500±25 K the differences are generally larger
than at 650±25 K and a stronger negative correlation is found for N2O mixing ratios
greater than 200 ppbv as was also found in the evaluation for the tropics. The differ-
ences lie generally around ±20% especially for midlatitude N2O mixing ratios less than
200 ppbv (which can be attributed to air of midlatitude and polar origin, see reference15

curves shown in Fig. 1, bottom: right). Larger differences up to (−50%) are found be-
tween the models and Odin/SMR for N2O mixing ratios greater than 200 ppbv. Here,
differences are gradually increasing with increasing N2O due to the steeper correlation
of the curves between 200 and 300 ppbv N2O. These air massses can be attributed to
air of tropical character as can be seen from the evaluation of the model simulations in20

the tropics discussed in the previous section.
At 500±25 K a larger amount of air of polar origin (N2O mixing ratios less than

110 ppbv) is found in the CLaMS simulation in November and December than observed
by Odin/SMR (Fig. 4, left). A somewhat larger amount is also found in the KASIMA sim-
ulation in December while in E5M1 a generally lower amount is found (see next section25

for further details). In February large differences are found between all models and
Odin/SMR at low N2O mixing ratios (Fig. 4, February). However, these differences are
most likely caused by the comparably low number of data points in the bins and a high

1993

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/1977/2009/acpd-9-1977-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/1977/2009/acpd-9-1977-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 1977–2020, 2009

Model evaluation

F. Khosrawi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

variability of the Odin/SMR measurements (mixture between inside and outside of the
vortex air) which also leads to the somewhat unrealistic zigzag shape for N2O mixing
ratios between 50 and 150 ppbv.

5.2.3 Polar regions

Since the ILAS/ILAS-II data are available for the polar regions this data set has been5

included in the evaluation for the polar regions (Fig. 5). Again a good agreement be-
tween CLaMS, KASIMA and E5M1 is found for 650±25 K. The small O3 minimum found
in the Odin/SMR data at 200 ppbv N2O (650±25 K) in January is most likely caused
by a comparably low number of data points in the bins and a high variability of the
Odin/SMR measurements. This minimum is neither found in the ILAS/ILAS-II data nor10

in the model simulations. At 650±25 K the difference lies in the range of ±20%. In
CLaMS and E5M1 a larger amount of air of midlatitude and tropical character is found
(visible as the extension of the curve to larger N2O mixing ratios).

Generally, at 650±25 K the differences remain the same (in the range of ±20%) for
all months considered here (Fig. 5, right). Solely, the differences between ILAS/ILAS-II15

and E5M1 are somewhat larger in November for N2O<30 ppbv and N2O>170 ppbv
(Fig. 5, right). The ILAS/ILAS-II measurements at 650±25 K show somewhat lower
ozone mixing ratios than observed by Odin/SMR in November and December. Most
likely the cause for this lower ozone mixing ratios is the fact that ILAS/ILAS-II measures
closer to the pole than Odin/SMR and thus more air from inside the vortex and less20

air of midlatitude character. At 500±25 K differences are somewhat larger but also
in the range of ±20%. Larger differences reaching up to −40% are found for N2O
mixing ratios greater than 200 ppbv. The data points can be attributed to air of tropical
character as described already in the previous two sections. However, differences are
smaller here than in the midlatitudes and tropics due to the mixing of the different air25

masses and thus the dilution of the air of tropical character (Fig. 5, right).
Polar winter ozone loss is visible at 500±25 K from January on by an inflection of the

curves and thus a change of slope to negatively correlated and an extension to lower
1994
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N2O mixing ratios (Fig. 5, left, January). In the Odin/SMR data this inflection between
ILAS/ILAS-II and Odin/SMR is found at 190 ppbv N2O and ILAS/ILAS-II at 150 ppbv.
This difference in the inflection is most probably caused by differences in ozone loss
in the winters 1996/1997 and 2002/2003 (all months shown here are taken from ILAS
measurements, thus from 1996/1997). In the CLaMS, and KASIMA simulation the5

inflection is found at the same location as Odin/SMR. In the E5M1 simulation the in-
flection is found at somewhat higher N2O mixing ratios (210 ppb instead of 190 ppb
N2O) and the O3 mixing ratios are not as low as measured by Odin/SMR. The O3 mix-
ing ratios in E5M1 are rather increasing towards February which indicates that polar
winter ozone loss is underestimated. A slight underestimation of polar ozone loss is10

also found in the KASIMA simulation since the O3 mixing ratios are not reaching as
low values as CLaMS or Odin/SMR, but for the CLaMS simulation a good agreement is
found. An underestimation of polar ozone loss has also been observed in other CCMs,
e.g. in the CCM WACCM (Whole-Atmosphere Community Climate Model). Tilmes et al.
(2007) showed that Arctic ozone loss in spring is severely underestimated by WACCM.15

While the understimation of ozone loss in KASIMA is most probably caused only by a
underestimation of the chemistry, in E5M1 the underestimation of ozone loss is most
probably caused by both an underestimation of the chemistry as well as descent since
the typical low O3 mixing ratios found at low N2O mixing ratios (<50 ppbv), thus an
extention of the curve to lower N2O values, are not found in the E5M1 simulation. At20

650±25 K differences in the averaged O3 mixing ratios are generally within ±20%, thus
a good agreement is found here. A rather reasonable agreement with differences up to
−40% is found for N2O mixing ratios greater than 250 ppbv. In both levels the N2O/O3
distribution remains almost unchanged in all data sets from January to February.

5.3 Assessment on different data sets used for a model evaluation25

In the following we will repeat the evaluation for the polar regions using the ILAS/ILAS-II
data set as the reference data set to assess how the results change if this data set is
used instead of Odin/SMR. The general characteristics of the monthly averages derived
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from CLaMS, KASIMA and E5M1 are in agreement with the monthly averages derived
from ILAS/ILAS-II measurements (Fig. 6).

Generally the difference between the ILAS/ILAS-II data and the CLaMS, KASIMA
and E5M1 results are similar to the differences derived using the Odin/SMR data set
as a reference. However, somewhat larger differences are found for CLaMS, KASIMA5

and E5M1 in November in December at 500±25 K compared to the evaluation using
Odin/SMR as the reference (Fig. 6 compared to Fig. 5, right). Further, somewhat larger
differences are also found to all three models in January and February at 650±25 K and
at 500±25 K since at this level lower O3 mixing ratios were measured by ILAS/ILAS-II
than by Odin/SMR. This is due to the fact that ILAS/ILAS-II measurements are focused10

on the polar regions and thus a less air from outside the vortex (air that contains larger
amounts of ozone) was sampled. Further, due to the focus of ILAS/ILAS-II on the polar
regions and the usage of solar occultation technique, the N2O/O3 curves derived from
ILAS/ILAS-II extend over a smaller N2O range than the curves derived from Odin/SMR
(Fig. 6 compared to Fig. 5).15

Furthermore, the large differences which were found in the evaluation of CLaMS,
KASIMA and E5M1 with Odin/SMR at N2O mixing ratios greater than 200 ppbv due to
air of tropical character are not found here since such air masses are not measured by
ILAS/ILAS-II (Fig. 6, left). Thus, it seems, that the models show a stronger influence
of air of polar and midlatitude character in the tropical regions. However, as discussed20

before these differences are also caused partly by the large vertical gradients in O3 in
the tropics which cannot be resolved properly by the coarse vertical resolution of the
Odin/SMR measurements (3 km).

Using the ILAS/ILAS-II data set as reference for the model evaluation shows slight
deviations in the absolute differences compared to than Odin/SMR is used as refer-25

ence. However, the main result, that CLaMS, KASIMA and E5M1 are in good agree-
ment (±20%) with the observations is also supported by the evaluation using
ILAS/ILAS-II data as reference. Thus, both data set are suitable for a model evaluation.
Of course, the ILAS/ILAS-II data set can only be used for an evaluation study for the
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polar regions. If the entire hemisphere or a separation into latitude regimes is antici-
pated one needs to use the Odin/SMR data sets. Further, there are also other satellite
measurements which can be used for deriving monthly averages of N2O and O3 and
thus can be used for an evaluation study as presented here. Furthermore, we also
would recommend to take all available data sets derived from satellite measurements5

into account for a model evaluation study.

5.4 Assessment on different vertical resolutions used in model simulations

To asses the impact of different vertical resolutions of the model simulation we compare
the E5M1 simulation in T42L90MA resolution used in the evaluation study described
in the previous sections with an E5M1 simulation with a T42L39MA resolution (Fig. 7,10

NH, all latitudes). Generally, the shape of the curves are similar, however differences of
the T42L39MA data to Odin/SMR are somewhat larger, especially at 500±25 K than for
the high resolution simulation. At 500±25 K ozone mixing ratios are generally higher in
the T42L39MA simulation than in the T42L90MA simulation (November and December
entire curve, January and February N2O values greater than 200 ppbv). That E5M115

underestimates the polar ozone destruction during winter is a general problem of the
model, however, much better results are derived with the E5M1 simulation with a higher
vertical resolution. In the T42L39MA simulation the slope change is found at 230 ppbv
(500 K, January) while it is found at 210 ppbv in the T42L90MA simulation, which is
almost in agreement with Odin/SMR where the slope change is found at 190 ppbv20

(Fig. 7, left, January).
At 500 K, differences in ozone mixing ratios between E5M1 and Odin/SMR increase

with decreasing N2O towards February. In February, at 70 ppbv N2O 4.2 ppmv O3 are
derived from both E5M1 simulations instead of 2.7 ppmv as derived from Odin/SMR
observations (a difference of 1.7 ppmv and thus up to 65% more ozone in both simula-25

tions).
Another important difference is that in the simulation with lower resolution some ar-

tifacts are occuring, namely at the curve at 650±25 K in December. There is a peak
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in O3 at N2O mixing ratios between 230 ppbv and 280 ppbv. This peak most likely oc-
curs because of the quasi-biennial oscillation (QBO) which is treated differently in both
simulations. In the E5M1 T42L39MA simulation the QBO is nudged while in the E5M1
T42L90MA simulation the QBO develops freely.

5.5 Average differences5

An average of the differences in O3 mixing ratios between CLaMS, KASIMA and E5M1
and Odin/SMR has been calculated for each month to give an overview of the per-
formance of the models for each month of the year. While the KASIMA and E5M1
simulation cover an entire year the simulation of CLaMS covers only the winter period
(November to March) and only for the Northern Hemisphere. The calculation of the av-10

erage difference has been performed for the separation into the three latitude regimes:
high latitude (60◦–90◦), midlatitude (30◦–60◦) and low latitudes (0◦–30◦). Since the
CLaMS simulation focused on the polar regions the average of the differences has
not been calculated for the low latitudes. Further, since ILAS/ILAS-II measurements
only cover the polar regions the average of the differences of ILAS/ILAS-II have been15

calculated for the polar regions.

5.5.1 Northern Hemisphere

A good agreement between both satellite instruments, Odin/SMR and ILAS/ILAS-II,
is found at 500±25 K (Fig. 8, solid lines). Differences in O3 mixing ratios are lower
than ±20%. At 650±25 K differences are about the same, but increase to 35% for20

the summer months (May to September). Thus, for the summer months only a rea-
sonable agreement between ILAS/ILAS-II and Odin/SMR is found. Differences in O3
mixing ratios between the models and Odin/SMR are generally within ±20%, but reach
at some occasions up to 40% especially in the polar regions during summer months.
Differences exceeding 20% are found in the polar regions at 500±25 K from February25

to September (KASIMA, up to 40%) and in April (E5M1, 25%) as well as at 650±25 K
in May and August (E5M1, 25 and 30%). In the tropical regions, differences exceed-
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ing 20% are found from April to October (KASIMA, up to 30%) and from February
to September (E5M1, up to 25%). From the CLaMS simulation the summer months
are not available since the simulation covers only the winter months, thus, we do not
know whether differences higher than 20% are also found in CLaMS (Fig. 8, bottom).
Nevertheless, the best agreement between CLaMS, KASIMA and E5M1 is found for5

the midlatitude region where differences between the models and Odin/SMR over the
entire year are lower than ±20% (Fig. 8, middle).

5.5.2 Southern Hemisphere

Differences in the Southern Hemisphere are similar to the differences in the North-
ern Hemisphere (Fig. 9). For the polar regions, a good agreement is found between10

ILAS/ILAS-II and Odin/SMR at 500±25 K for all months except for October where differ-
ences increase up to −40% (Southern Hemisphere spring). This difference is caused
by the fact that ILAS/ILAS-II measured at that time of the year very close to the pole
and thus mainly air from inside the polar vortex where at that time low O3 mixing ratios
prevail because of chemical O3 loss. At 650±25 K a good agreement is found between15

ILAS/ILAS-II and Odin/SMR (differences within ±20%) for all months except January
where the difference reaches +40% (Fig. 9, top). As for the Northern Hemisphere
the best agreement between the models and Odin/SMR is found for the midlatitudes
with differences less than +20%. Solely, in the E5M1 simulation at 500±25 K differ-
ences up to −20% are reached in October and November (Fig. 9, middle panel). This20

“peak” in the E5M1 simulation is also found in the polar regions and can be attributed
to an underestimation of chemical ozone destruction in the ozone hole region. Thus,
in the E5M1 O3 mixing ratios as low as measured under ozone hole conditions are not
reached (Fig. 9, top). In E5M1 (not shown) the minimum O3 values (1 ppmv) measured
by Odin/SMR are reached, however, only for higher N2O mixing ratios (50–110 ppbv)25

than in the Odin/SMR observations (10–120 ppbv). This will result in an underestima-
tion of column O3 loss in the ozone hole. Underestimation of chemical ozone loss
in the Southern Hemisphere polar regions were recently also reported for the models
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WACCM (Tilmes et al., 2007) and E39/C (Lemmen et al., 2006).
In the polar regions the differences between Odin/SMR and KASIMA as well as

E5M1 lie generally between −10% and +30% (Fig. 9, top). Solely, differences up to
−20% are found for the E5M1 simulation at 500±25 K in October as discussed above
and up to 30% in September at 650±25 K. In the tropics the differences of KASIMA and5

E5M1 show the same shape with somehat larger differences in the KASIMA simulation
at 500±25 K. However, differences lie generally within ±25% but increase gradually
from −20% to +20% in July and decrease to −20% by December (Fig. 9, bottom).

6 Conclusions

Based on data sets of monthly averages of N2O and O3 derived from Odin/SMR and10

ILAS/ILAS-II we evaluated the CTMs CLaMS and KASIMA as well as the CCM E5M1
by using the method of (Proffitt et al., 2003). Using data from Odin/SMR allows to
perform the evaluation for the entire hemisphere as well as separated into the latitude
regions high, mid and low latitudes. Using additionally the ILAS/ILAS-II data set as
the reference for the polar latitudes it could be shown that this data set is also ade-15

quate for a model evaluation, although it is, restricted to the polar latitudes since from
ILAS/ILAS-II only measurements for this region are available.

In general, the data sets derived from the model simulations were in good agreement
with the data set derived from Odin/SMR. Differences of the averaged O3 mixing ratios
derived from CLaMS, KASIMA and E5M1 from Odin/SMR were calculated. These20

differences were generally in the range of ±20% considering the entire hemisphere (0–
90◦). Larger differences up to ±40% (thus a reasonable agreement) were found at N2O
mixing ratios greater than 250 ppbv (tropical air and air of tropical character). A clear
underestimation of ozone loss in polar winter is visible at 500±25 K in the KASIMA and
E5M1 simulations. The underestimation of ozone loss in KASIMA is most likely caused25

by an underestimation of chemical winter ozone loss while in E5M1 most likely also
descent in winter and early spring is underestimated since the typical low O3 mixing
ratios at low N2O mixing ratios seen in the averages of Odin/SMR and ILAS/ILAS-II
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were not simulated. The underestimation of ozone loss in E5M1 is a general model
difficiency, however, the model results can be improved significantly if a higher vertical
resolution is used as we showed comparing the E5M1 T42L39MA simulation with the
T42L90MA simulation. Recent analyses of chemical ozone loss in the polar regions
show that also other chemistry climate models signicantly underestimate ozone loss5

(Tilmes et al., 2007; Lemmen et al., 2006).
For the evaluation separated into latitude regimes (Figs. 3–5) the best agreement

between models and Odin/SMR was found for the midlatitude regions and the largest
differences for the tropics, but only at the 500±25 K level. This difference between
models and Odin/SMR is partly caused by the large vertical O3 gradients occurring10

in the tropical regions which cannot entirely be resolved by the rather coarse vertical
resolution of Odin/SMR of 3 km, but probably also to some part by an overestimation
of transport of polar and midlatitude air towards the tropical regions. To understand
this difference between the models and Odin/SMR in detail further data sets have to
be taken into account which was however beyond the scope of this study.15

Considering averages of the differences of O3 mixing ratios for each month over
an entire year, ILAS/ILAS-II and Odin/SMR were generally in good agreement and
differences were within ±20%. However, differences reaching up to ±40% where found
in the Northern Hemisphere during summer and in the Southern Hemisphere during
winter. Comparing these averaged differences of O3 mixing ratios derived from the20

model simulations with Odin/SMR the best agreement was found in both hemispheres
for the midlatitudes. Differences were generally within ±20% for both hemispheres and
all latitude regimes. Larger differences were found occasionally in both hemispheres for
the summer months in the tropics and polar regions. Thereby, differences reached up to
40% (KASIMA) at 500 K (NH) and up to 40% (E5M1) at 650 K (SH) in the polar regions.25

In the tropics the differences in the summer months reached up to 30% (KASIMA and
E5M1) at 500 and 650 K (NH and SH). Since the CLaMS simulation was only performed
for the winter months no evaluation of the summer months could be performed here.
Nevertheless, the method presented here presents a promising tool for the evaluation

2001

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/1977/2009/acpd-9-1977-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/1977/2009/acpd-9-1977-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 1977–2020, 2009

Model evaluation

F. Khosrawi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

of atmospheric chemical models like CTMs and CCMs and was successfully applied to
evaluate CLaMS, KASIMA and E5M1.
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Fig. 1. Schematic of the change of the N2O and O3 distribution in the Northern Hemisphere
polar region due to photochemical winter ozone loss at 20±2.5 km (top: left) and photochemical
summer ozone loss at 25±2.5 km (top: right) and diabatic descent at 25±2.5 km (bottom: left)
as well as reference curves (bottom: right) for the midlatitudes (May, ATMOS Shuttle 1985),
highlatitudes (April, ATMOS Shuttle 1993) and tropics (November, ATMOS Shuttle 1994). See
text for further details.
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Fig. 2. Left: Comparison of monthly averages of N2O and O3 derived from CLaMS, KASIMA and E5M1 (colored
curves) with Odin/SMR (grey) at 500±25 K and 650±25 K (Northern Hemisphere). The grey shaded area marks the
range of the standard deviations of the monthly averages of O3 derived from Odin/SMR. Right: Differences of the O3
averages of CLaMS, KASIMA and E5M1 from Odin/SMR.
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Fig. 3. Left: Comparison of monthly averages of N2O and O3 derived from KASIMA and E5M1 (colored curves) with
Odin/SMR (grey) at 500±25 K and 650±25 K (Northern Hemisphere tropics). The grey shaded area marks the range of
the standard deviations of the monthly averages of O3 derived from Odin/SMR. Right: Differences of the O3 averages
of KASIMA and E5M1 from Odin/SMR.
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Fig. 4. Left: Comparison of monthly averages of N2O and O3 derived from CLaMS, KASIMA and E5M1 (colored
curves) with Odin/SMR (grey) at 500±25 K and 650±25 K (Northern Hemisphere midlatitudes). The grey shaded area
marks the range of the standard deviations of the monthly averages of O3 derived from Odin/SMR. Right: Differences
of the O3 averages of CLaMS, KASIMA and E5M1 from Odin/SMR.
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Fig. 5. Left: Comparison of monthly averages of N2O and O3 derived from CLaMS, KASIMA, E5M1 and ILAS/ILAS-II
(colored curves) with Odin/SMR (grey) at 500±25 K and 650±25 K (Northern Hemisphere polar regions). The grey
shaded area marks the range of the standard deviations of the monthly averages of O3 derived from Odin/SMR. Right:
Differences of the O3 averages of CLaMS, KASIMA, E5M1 and ILAS/ILAS-II from Odin/SMR.
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Fig. 6. As Fig. 5, but using ILAS/ILAS-II as reference. Left: Comparison of monthly averages of N2O and O3 derived
from CLaMS, KASIMA, E5M1 and Odin/SMR (colored curves) with ILAS/ILAS-II (grey) at 500±25 K and 650±25 K
(Northern Hemisphere polar regions). The grey shaded area marks the range of the standard deviations of the monthly
averages of O3 derived from ILAS/ILAS-II. Right: Differences of the O3 averages of CLaMS, KASIMA, E5M1, and
Odin/SMR from ILAS/ILAS-II. 2017
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Fig. 7. As Fig. 2, but showing (left) the impact of different vertical resolutions. Left: The comparison of monthly aver-
ages of N2O and O3 derived from E5M1 T42L90MA and E5M1 T42L39MA simulation (colored curves) with Odin/SMR
(grey) at 500±25 K and 650±25 K (Northern Hemisphere). The grey shaded area marks the range of the standard
deviations of the monthly averages of O3 derived from Odin/SMR. Right: Differences of the O3 averages of E5M1
T42L90MA and E5M1 T42L39MA simulation from Odin/SMR.
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Fig. 8. Averaged differences between the O3 mixing ratio simulated by the models CLaMS,
KASIMA, E5M1 and the O3 mixing ratios measured by ILAS/ILAS-II from Odin/SMR for every
month of the year and separated by latitude region (Northern Hemisphere).

2019

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/1977/2009/acpd-9-1977-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/1977/2009/acpd-9-1977-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 1977–2020, 2009

Model evaluation

F. Khosrawi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Polar regions (SH)

2 4 6 8 10 12

Month

−60

−40

−20

0

20

40

60

D
iff

er
en

ce
 (

%
)

        KASIMA (500 K)   
        E5M1 (500 K)   
        ILAS (500 K)   
        KASIMA (650 K)   
        E5M1 (650 K)   
        ILAS (650 K)   

Midlatitudes (SH)

2 4 6 8 10 12

Month

−40

−20

0

20

40

D
iff

er
en

ce
 (

%
)

        KASIMA (500 K)   
        E5M1 (500 K)   
        KASIMA (650 K)   
        E5M1 (650 K)   

Tropics (SH)

2 4 6 8 10 12

Month

−40

−20

0

20

40

D
iff

er
en

ce
 (

%
)

        KASIMA (500 K)   
        E5M1 (500 K)   
        KASIMA (650 K   
        E5M1 (650 K)   

Fig. 9. Averaged differences between the O3 mixing ratio simulated by the models KASIMA,
E5M1 and the O3 mixing ratios measured by ILAS/ILAS-II from Odin/SMR for every month of
the year and separated by latitude region (Southern Hemisphere).
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